Understanding the role of three-dimensional topology in determining the folding intermediates of group I introns.

نویسندگان

  • Chunxia Chen
  • Somdeb Mitra
  • Magdalena Jonikas
  • Joshua Martin
  • Michael Brenowitz
  • Alain Laederach
چکیده

Many RNA molecules exert their biological function only after folding to unique three-dimensional structures. For long, noncoding RNA molecules, the complexity of finding the native topology can be a major impediment to correct folding to the biologically active structure. An RNA molecule may fold to a near-native structure but not be able to continue to the correct structure due to a topological barrier such as crossed strands or incorrectly stacked helices. Achieving the native conformation thus requires unfolding and refolding, resulting in a long-lived intermediate. We investigate the role of topology in the folding of two phylogenetically related catalytic group I introns, the Twort and Azoarcus group I ribozymes. The kinetic models describing the Mg(2+)-mediated folding of these ribozymes were previously determined by time-resolved hydroxyl (∙OH) radical footprinting. Two intermediates formed by parallel intermediates were resolved for each RNA. These data and analytical ultracentrifugation compaction analyses are used herein to constrain coarse-grained models of these folding intermediates as we investigate the role of nonnative topology in dictating the lifetime of the intermediates. Starting from an ensemble of unfolded conformations, we folded the RNA molecules by progressively adding native constraints to subdomains of the RNA defined by the ∙OH time-progress curves to simulate folding through the different kinetic pathways. We find that nonnative topologies (arrangement of helices) occur frequently in the folding simulations despite using only native constraints to drive the reaction, and that the initial conformation, rather than the folding pathway, is the major determinant of whether the RNA adopts nonnative topology during folding. From these analyses we conclude that biases in the initial conformation likely determine the relative flux through parallel RNA folding pathways.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Folding mechanisms of group I ribozymes: role of stability and contact order.

The mechanism by which RNA molecules assemble into unique three-dimensional conformations is important for understanding their function, regulation and interactions with substrates. The Tetrahymena group I ribozyme is an excellent model system for understanding RNA folding mechanisms, because the catalytic activity of the native RNA is easily measured. Folding of the Tetrahymena ribozyme is dom...

متن کامل

Structural Characteristics of Stable Folding Intermediates of Yeast Iso-1-Cytochrome-c

Cytochrome-c (cyt-c) is an electron transport protein, and it is present throughout the evolution. More than 280 sequences have been reported in the protein sequence database (www.uniprot.org). Though sequentially diverse, cyt-c has essentially retained its tertiary structure or fold. Thus a vast data set of varied sequences with retention of similar structure and fun...

متن کامل

Group I introns and RNA folding.

Before the discovery of catalytic RNA, tRNA molecules were the most studied RNA molecules for understanding RNA folding. Afterwards, group I introns, because of their stability and the fact that structural folding could be monitored by following their catalytic activity, became the molecule of choice for studying RNA architecture and folding. A major advantage of group I introns for studying th...

متن کامل

Topological and energetic factors: what determines the structural details of the transition state ensemble and"on-route"intermediates for protein folding? An investigation for small globular proteins

Recent experimental results suggest that the native fold, or topology, plays a primary role in determining the structure of the transition state ensemble, at least for small fast folding proteins. To investigate the extent of the topological control of the folding process, we study the folding of simplified models of five small globular proteins constructed using a Gō–like potential in order to...

متن کامل

DAMAGE IDENTIFICATION BY USING MODAL EXPANSION AND TOPOLOGY OPTIMIZATION IN THREE DIMENSIONAL ELASTICITY PROBLEMS

In this paper, topology optimization is utilized for damage detection in three dimensional elasticity problems. In addition, two mode expansion techniques are used to derive unknown modal data from measured data identified by installed sensors. Damages in the model are assumed as reduction of mass and stiffness in the discretized finite elements. The Solid Isotropic Material with Penalization (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biophysical journal

دوره 104 6  شماره 

صفحات  -

تاریخ انتشار 2013